
Managing Home Energy Use

70,000 (O)

A guide to measuring energy consumption, using audit tools, and implementing conservation practices in the home.

■ Home Energy Efficiency Kit*

- ■Flow meter bag
- ■Hot water gauge
- ■Low flow shower head
- ■Bathroom sink aerator
- Kitchen sink aerator
- ■Roll of teflon tape
- ■Outlet and switch plate gaskets
- ■Thermostat temperature guide
- ■Refrigerator thermometer
- ■1 Light emitting diode (LED) bulb
- ■Nightlight
- ■Reply form
- * These are materials often found in utility-sponsored home energy kits. If you do not have these materials, many of the activites can still be done to some degree. For more information on obtaining supplies like these, contact NEED at info@need.org.

Managing Home Energy Use

Table of Contents

■ Introductory Letter	3
Goal-tracking Thermometer	4
■ Lesson 1 – Introduction to Energy and Its Management	5
Activity 1 – How Does Your Household Rate?	5
■ Lesson 2 – Thermal Energy & Water Use	7
■ Activity 1 – Seal of Approval	8
■ Activity 2 – We're in a Lot of Hot Water	10
■ Activity 3 – We Can't Take the Heat	12
■ Lesson 3 – Electricity	14
■ Activity 1 – Morning Money Crunch	14
■ Activity 2 – (R)Amp Up the Efficiency	16
Lesson 4 – Lighting	19
■ Activity 1 – This Is Your Light!	19
■ Activity 2 – Shed a Little Light on Efficiency	21
■ Lesson 5 – Home Systems	23
■ Activity 1 – Well, Well, Well, What Do We Have Here?	23
Lesson 6 – Home Energy Audits and Summary	26
■ Activity 1 — Re-rate Your Energy Use	27

INTRODUCTORY LETTER

Your child is learning about energy use at school. This guide is designed to build upon and reinforce the school lessons while applying his/her observations to home energy use and teaching the household about their knowledge gains.

Working with your child, as a household, you will conduct a step-by-step audit of your energy consumption and discover ways you can save money on your energy bills right away – many without any additional cost.

If you are interested in more information, the U.S. Department of Energy's Energy Saver website has tips and information about all areas of energy use in the home. Furthermore, many utility companies offer free or low-cost energy audits conducted by a professional who can demonstrate tasks and develop a plan to save money on your energy bills. You can find the Energy Saver website by navigating to https://energy.gov/energysaver/energy-saver.

Teachers often encourage their students to set goals, and write them down. In that light, we encourage you, at the start of this unit, to write down a goal for your family. Decide how much money you would like to save on a monthly basis, or annually, and write it on a piece of paper. Include steps you might follow to help get you there. For example, "By January 1, of this school year, we want to save a total of \$500 combined on our electricity, gas, and water bills by taking shorter showers, using only cold water in the washing machine, and turning off lights when we leave each room." Have everyone in the family sign the goal statement so everyone can work together to achieve the goal.

A fun way to track progress toward your goal is to make a chart, such as an empty thermometer, and fill it in as you progress toward your goal. An example tracking chart can be found on page 4. Another great way to concretely demonstrate how saving energy translates into saving money is to compare your current energy bills to those of the same month from last year. Add up the savings, and put that much cash into a small bank or jar. As the jar fills with cash, your household will be more excited and motivated to save more energy and money. At the end of your goal period, count the money in the jar, and decide as a group what you will do with it.

Home Energy Efficiency Kits

Your child may be participating in a program through school that provides a home efficiency kit with supplies to help you use less energy at home. Activities that use these items have them listed in the materials section of each activity.

If you do not have a kit you can still do most of the activities in this guide with little to no modification. Simply skip the steps that utilize an item from the kit. You will still be able to learn how to use less energy and save money by going through the activities in this book. Furthermore, many of the items in the kit are available for sale at your local home improvement store at a nominal or very low cost. Another option might be to obtain the items through your electric utility company, so give them a call, or check out their website for options.

Track Your Progress!

GOAL-TRACKING THERMOMETER

Lesson 1 Introduction to Energy and Its Management

In school, your child learned about how we use energy. When electricity is factored in, the residential and commercial sectors of the economy (homes and businesses) use the most energy.

Energy efficiency is related to the equipment we select to do a certain job. For example, a 4-door sedan and pickup truck will both carry us to the store, but the sedan will probably do so using less fuel. It is more efficient. Using efficient appliances, electronics, and lighting can help reduce energy use and cost at home, while still performing the same tasks.

Energy conservation is related to the behavior of those using the equipment. For example, even the most efficient refrigerator wastes energy when the door is left open unnecessarily. Conserving behaviors do not cost any money to implement, and they can help significantly reduce the amount of money your household spends on energy.

Activity 1 | How Does Your Household Rate?

As a household, determine which answer to each statement – either column 1, 2, 3, or 4 – best matches the situation in your home. Shade in the box that corresponds to the best match. Calculate your home's initial energy consumption score.

Energy Efficiency and Conservation at Home	4	3	2	1
Appliances That Are ENERGY STAR® Rated	All	More than ½	About ½	None
Lights That Are CFL Or LED	All	Most	About ½	Almost none or none
Electronics With Phantom Loads (Drawing Power When Turned Off)	None (unplugged)	About ½	Most	All
Thermostat Setting During Heating Season	68 or lower	69-70	71-72	73 or higher
Thermostat Setting During Cooling Season	78 or higher	76-77	74-75	72 or lower
Laundry Loads Run Less Than Full	None	Less than ½	About ½	Most
Dishwasher Run Less Than Full	Never	Occasionally	About ½ the time	Usually
Hot Water Setting (°F)	120 or less	121-130	131-140	140 +
Doors And Windows Closed When Furnace Or Air Conditioner Turned On	Always	Usually	Sometimes	Rarely
Lights Left On When Room Is Empty	Rarely	Sometimes	About ½	Usually
Fans Left On Overnight	0	1-2	3-4	5+
TVs Left On Overnight	0	1	2	3+
Game Console Or Computer Left Running	Never	Rarely	Occasionally	Frequently
Heating System Turned On When	Temperature inside < 65	Temperature out- side < 65	Temperature out- side < 70	A/C not turned on
Cooling System Turned On When	Temperature inside > 83 or Not Turned On/In Use	Temperature out- side > 83	Temperature out- side > 80	Heat not turned on
Programmable Thermostat	Yes			No
Calculate Your Score – Total Boxes Shaded				
× score per box shaded	×4	×3	×2	×1
Column Score				
Total Score (add 4 column scores above)			Initial Energy Consu	mption Score

Activity 1 | How Does Your Household Rate? CONTINUED

	•				•	
D	ıc	CI	IC	CI	n	n

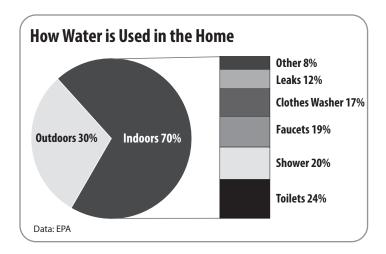
- 1. A perfect household score is 64. What was your score? _____.
- 2. Discuss as a group the choices you can make now to improve your household's score based on your answers on the chart. Which changes would have the largest impact on your score? Which changes do you think would save the most energy?

3. Of the changes you listed in question 2 above, identify which are energy efficiency choices and which are energy conservation choices by filling in the chart below.

EFFICIENCY CHOICES		CONSER	VATION CHOICES	
6				
U	©2019	The NEED Project	Managing Home Energy Use	www.NEED.org

Lesson 2 | Thermal Energy & Water Use

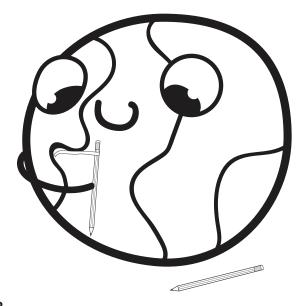
Thermal energy is the energy that gives substances their warmth. Steam has more thermal energy than liquid water, and water has more thermal energy than ice. When thermal energy is transferred, it moves from higher temperature to lower temperature. Thermal energy is transferred through conduction (direct contact), convection (flowing fluid), and radiation (waves of energy). Most home heating systems use convection to transfer thermal energy and heat rooms. Heating and cooling accounts for more than 40 percent the energy used in a home, and water heating is another 16 percent.


Heating and cooling systems are controlled by a thermostat. The temperature is set so that the heating system turns on if the air temperature falls below the setting. Programmable thermostats allow the homeowner to adjust the temperature for different times of the day, or when a cooler temperature is acceptable such as when everyone is away at work or school, or everyone is asleep under warm blankets. The program can be adjusted to begin warming the home just before the first person arrives, and to reduce the temperature after the last person is asleep or has left for the day. Programmable thermostats are available for all types of systems that will help you save money on your energy bill.

If you cannot install a programmable thermostat, you can adjust the temperature at night and when no one is home. If you do not set the temperature above 68 °F in the winter or below 78 °F in the summer, you will still be comfortable, yet make your energy bills more affordable.

Water heating is another large energy user, so using hot water wisely will help control this expense. Setting the temperature of the water heater to 120 °F will allow for hot showers, prevent accidental scalding, and save money. In addition, using a low-flow shower head and washing clothes in cold or cool water will help use less hot water. A tankless water heater is the most efficient way to deliver hot water when you need it. It does not have a tank of water to keep hot when it's not being used, so the heater only runs when hot water is needed.

The amount of water used in your home also impacts the amount of energy used by your home. Beyond heating the water, extensive amounts of energy are put into extracting, treating, distributing, and disposing of the water you use. The average American household of four uses about 400 gallons of water every day. Here are some great ways you can reduce the amount of water you use at home:


- 1. Turn off the water while brushing your teeth. You don't need running water to do a good job on those pearly whites!
- Take showers instead of baths. Most showers use significantly less water than filling the tub with water. Try to limit your showers to conserve water and energy.
- Don't use more water than needed when cooking. A box of macaroni and cheese does not need a giant stock pot full of water, and many things that are cooked on the stove in water can instead be microwaved, saving both electricity and water.
- 4. Use a high efficiency washing machine, which minimizes the amount of water used to clean clothes. Also, you can probably select the water level to match the amount of laundry you have placed in the machine, or even better, only run the washing machine with full loads.
- Only run your dishwasher on pot scrubber when the dishes are really, really dirty. Instead, select "normal" for ordinary dish dirt.
- Scrape your plates into the trash with a fork or knife instead
 of running them under a strong steam of water. Even better,
 scrape those food wastes into a bucket to use in composting or
 vermiculture (worm farming).
- Keep a cover on your swimming pool or hot tub when it's not being used. Evaporating water must be replaced; this is especially important if you live in a dry climate.

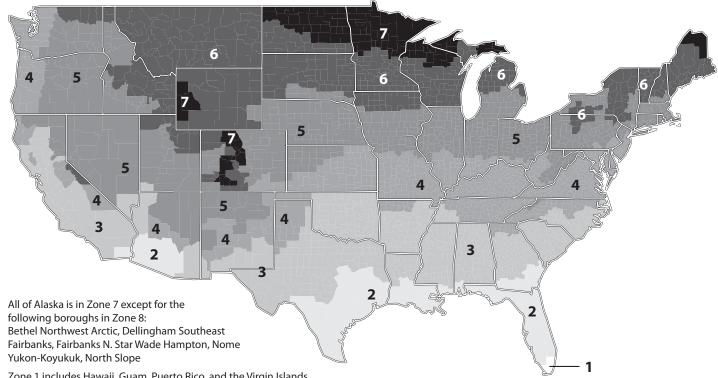
Adjusting the thermostat doesn't always save energy well if your home is not insulated or sealed properly. Poorly insulated attic spaces result in tremendous amounts of energy being wasted through the roof. Furthermore, air can leak or filter out through small cracks and gaps in walls and around windows and doors. This can add up to leaving a door wide open all day, every day. Sealing those gaps with caulking and weatherstripping will reduce air infiltration. Adding insulation in the attic to achieve the recommended R-value will ensure that your energy saving behaviors are not counteracted by a leaky attic. Insulation is helpful in warm and temperate climates!

Materials

- Outlet and light switch gaskets from kit
- Tissue paper strip or strip of plastic wrap
- Pencil
- Tape
- Sticky notes
- Ruler
- Screwdriver

Procedure

1. Tape the short edge of the tissue paper strip to the pencil, so it extends away from the pencil.


TISSUE PAPER

- Make sure all fans are turned off and windows and outside doors are closed. Turn off the heating or air conditioning system while you do this test, if possible.
- 3. Moving from room to room, hold the pencil so the paper hangs from the pencil. Hold it up to places where air could leak. Test all windows, outside doors, and any electrical outlets or light switches that are on outside walls. Anywhere you notice significant air movement, place a sticky note (or tape) on the wall or near the crack, and keep tally on the data sheet.
- Windows and doors with air leaking in should be sealed with caulking or weatherstripping.
- Any electrical outlets or light switches can be sealed by using the screwdriver to remove the cover, inserting the gasket from the kit, and replacing the cover.
- 6. After corrections have been made, re-test with the tissue paper.
- Go into the attic (if able to safely do so) and measure the thickness of the insulation if you see it. Record information about your insulation on the data sheet.
- Use the R-value graphic to determine how much insulation you should have.

Activity 1 | Seal of Approval

CONTINUED

Recommended R-Values for New Wood-framed Homes

Zone 1 includes Hawaii, Guam, Puerto Rico, and the Virgin Islands.

			WALL INS	SULATION —	
ZONE	ATTIC	CATHEDRAL CEILING	CAVITY	INSULATION SHEATHING	FLOOR
1	R30 to R49	R22 to R38	R13 to R15	None	R13
2	R30 to R60	R22 to R38	R13 to R15	None	R13, R19 to R25
3	R30 to R60	R22 to R38	R13 to R15	R2.5 to R5	R25
4	R38 to R60	R30 to R38	R13 to R15	R2.5 to R6	R25 to R30
5	R38 to R60	R30 to R60	R13 to R21	R2.5 to R6	R25 to R30
6	R49 to R60	R30 to R60	R13 to R21	R5 to R6	R25 to R30
7	R49 to R60	R30 to R60	R13 to R21	R5 to R6	R25 to R30
8	R49 to R60	R30 to R60	R13 to R21	R5 to R6	R25 to R30

Data: U.S. Department of Energy

Activity 1 | Seal of Approval CONTINUED

Data

Results of Air Infiltration Test:				
windows leaked doors leaked electric	cal outlets o	or switches leaked		
windows sealeddoors sealedelectric	cal outlets o	or switches sealed		
Results of Attic Insulation Inspection:	١	What You See	What It Probably Is	R-value / inch
nesures of Actic Histiation hispection.		Light-weight yellow, pink, or white	Fiberglass	2.5
Thickness of Insulation:	Loose fibers	Dense gray or near- white, may have black specks	Rock wool	2.8
Type of Insulation:		Small gray flat pieces or fibers (newsprint)	Cellulose	3.7
R-value of this thickness and type of insulation (see chart)	Granules	Light-weight	Vermiculite or perlite	2.7
inches thick × R-value/inch = R-value	Batts	Light-weight yellow, pink, or white	Fiberglass	3.2
Recommended R-value for your attic in your area:	Source: Ins	ulation Fact Sheet, Oak	Ridge Nationa	al Laboratory

Discussion

- 1. If your home is underinsulated, you can save energy costs immediately by adding insulation. The Energy Calculator from Lawrence Berkeley National Laboratory can help you determine what you need to add: http://hes.lbl.gov/consumer/. Do you need additional insulation? How much do you need?
- 2. Homes should not be sealed up 100% air-tight. As a household, discuss why a small amount of fresh air is needed in your home.
- 3. Download the Insulation Fact Sheet from Oak Ridge National Laboratory for additional information and insulation pointers. http://web.ornl.gov/sci/buildings/docs/factSheets/Insulation-FactSheet-2008.pdf

Activity 2 | We're in a Lot of Hot Water

Hot water in a tank requires energy to keep it at the set temperature. The higher the temperature setting, the more energy is needed to keep that water hot so it's ready when needed. Serious injury in the form of scalding burns can occur when hot water is above 140 °F. Keeping the temperature at an energy-saving level can not only save money, it can keep everyone safe.

Materials

- · Flow meter bag from kit
- · Hot water gauge from kit
- Faucet aerators from kit
- Low flow shower head from kit
- Teflon tape from kit
- Timer or stopwatch

Activity 2 | We're in a Lot of Hot Water

Safety and Procedure Notes

- Young children should have appropriate supervision to prevent burns from hot water.
- A candy thermometer can substitute for the hot water gauge.
- If you don't have a flow meter bag you can use a bucket to collect the water for one minute, then measure the water with a measuring cup.

Procedure

- 1. Start in the room closest to the water heater that has a faucet the kitchen or a bathroom. Following the directions on the flow meter bag, hold the bag beneath the faucet.
- 2. At the same time, turn the faucet on all the way on cold and start the stopwatch or timer.
- 3. Turn the water off after one minute and read the amount of water that has run into the bag. Record data in the data chart. Water a plant, if you can, with the water collected so the water does not go to waste.
- 4. Turn the hot water on and allow it to run until it is at its hottest temperature.
- 5. Put the hot water gauge in the stream of water and measure the temperature. Record the data on the data chart.
- 6. Repeat the procedure for the rest of the faucets in your home, including all showers.
- 7. Permanently install the aerators and low flow shower head where they will be most effective in reducing water use.
- 8. After the aerators and shower head have been installed, repeat the flow test and compare.

Data

Room	Type of W	ater Source	Water Flow Rate	Hot Water Temperature
	□ Faucet	☐ Shower		
	☐ Faucet	☐ Shower		
	☐ Faucet	☐ Shower		
	☐ Faucet	☐ Shower		
	☐ Faucet	☐ Shower		
	☐ Faucet	☐ Shower		
Bathroom after aerator	⊠ Faucet	☐ Shower		
Bathroom after shower head installed	☐ Faucet	⊠ Shower		
Kitchen after aerator	⊠ Faucet	☐ Shower		

Activity 2 | We're in a Lot of Hot Water

Discussion

1.	On average, how long are showers in your household? minutes.
2.	Using the flow rate for your shower before the low flow shower head was installed, calculate how many gallons of water are used for each shower gallons.
3.	Using the flow rate for your shower after the low flow shower head was installed, calculate how many gallons of water will now be used for each shower gallons.
4.	How many gallons of water will now be saved for each shower of average length taken in your home? gallons.
5.	If your household pays its own water bill, use the rate charged by your water provider to calculate how much money you will save on each shower by using the low flow shower head. \$
6.	A water heater jacket costs \$20-30 and will save 7-16% on water heating costs. Use the Energy Saver website to review information about water heater jackets and discuss whether this would be a good investment for your home to help save money. Navigate to https://energy.gov/e

Activity 3 | We Can't Take the Heat

Staying comfortable is an important part of why we use energy. However, in our quest for comfort, we can end up using more energy than is necessary. It's always a balance between energy savings and individual comfort when setting the thermostat. The U.S. Department of Energy has determined that 68 °F is a good winter-time setting that keeps most people comfortable while keeping energy use low. The recommended summertime setting is 78 °F.

Keeping food fresh and safe from spoilage is another important reason we use energy. However, sometimes the refrigerator is set cooler than is necessary. To safely store food, the refrigerator should be 35-40 °F and the freezer attached to your refrigerator should be 0-5 °F. A stand-alone freezer should be at or below zero. The seal around the refrigerator and freezer doors should be tight, too, to keep the cold air in and the warm air out.

Materials

- Thermostat guide from kit
- Fridge thermometer from kit
- Dollar bill
- · Empty jar or large plastic cup
- Scrap paper

Procedure

- Open the refrigerator door, hold the dollar bill against the edge
 of the door, and close the door so the dollar bill is trapped
 between the seal and the refrigerator. Pull on the dollar bill.
 Take note of how easily it moves towards you, if at all. Repeat
 in multiple areas of both the refrigerator and freezer doors. Test
 any refrigerators and freezers in your home.
- Place the fridge thermometer in a glass of water inside the
 refrigerator and close the door. Leave it in the refrigerator at
 least three hours, then record the temperature. Repeat for
 the freezer, carefully chipping away the ice to read the
 thermometer if necessary.
- Consult your refrigerator's setting knob or display to adjust the temperature, if needed. Make small adjustments and wait 24 hours before re-checking the temperature. Adjust as often as necessary to reach the safety zone for food (35-40 degrees for refrigeration, 0-5 degrees for freezers).
- 4. Place the thermostat guide near the thermostat. Set the thermostat for 68 °F and wait a few hours, then compare that setting to the temperature on the guide. If the actual temperature is above or below the thermostat setting, adjust the thermostat accordingly. You can also have your thermostat recalibrated by your heating and cooling professional.

Activity 3 | We Can't Take the Heat

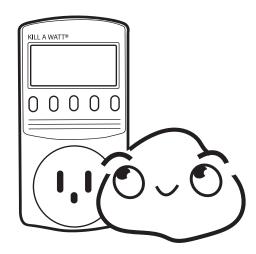
5. Hold a contest for a week. The prize can be something as simple as not having to help with dishes for the weekend. Set the thermostat to 68 °F. Every time you put on a sweater or a warm pair of socks or slippers, or wrap up with a blanket, instead of turning up the heat or turning on a space heater, write your name on a piece of scrap paper and place it in the jar or cup. The person whose name is in the jar the most at the end of the week wins! If you are in a warm climate, conduct the same competition by keeping the air conditioner set at 78 °F and recording how many times you change into cooler clothes, use a small fan, or drink a cold drink to cool off.

Discussion

- 1. How easily did the dollar bill pull out from the refrigerator door(s)? If it slips out easily, the seal needs replacing. Most manufacturers sell replacement seals for their appliances. A local appliance parts store, or online retailers of appliance parts, can provide a replacement if you have the brand name and model number. Your appliance retailer will tell you how to locate the model number, which is often on the inside of the door.
- 2. Who won your thermostat contest? How long did it take during the week before the temperature felt comfortable? What else can you do to use less energy on heating or cooling?

Lesson 3 | Electricity

Electricity accounts for upto 70 percent or more of a home's energy use. While much of that electrical energy is used to run large appliances like refrigerators and air conditioners, the multitude of small appliances and electronics that we use every day can add up to big energy expenditures if we are not careful about how we use them.


The electric power used by a device is measured in watts, which is calculated by multiplying the current by the voltage. Most household electrical devices run on 120 V circuits; the exceptions are big items like stoves and clothes dryers. The wattage of electrical devices and electronics can be determined by looking at the Underwriter Laboratories (UL) label on the device. It will list the maximum energy consumed, often in watts but sometimes as current and volts.

Electric utilities meter the energy we use by charging us for kilowatt-hours. A kilowatt is a thousand watts; therefore a kilowatt-hour is the energy needed to power 1,000 watts for one hour. The national average residential electricity rate is roughly \$0.13 per kilowatt-hour (\$0.129), but your rate may be higher or lower. You can determine your electricity rate by looking at your utility bill. Determining how much it costs to run devices is easily accomplished when the power of the device and your electricity rate are known.

Some devices use electricity even when turned "off." Electronics with a remote control, such as a DVD player or television, use power all the time. Microwave ovens with LED clocks, and any other device with an internal clock, also use power constantly. These are called phantom loads because while the device appears to be turned off, it is actually using energy. A smart power strip can eliminate phantom loads by turning off the power to everything plugged into it. Phantom loads are also eliminated by unplugging the device when it is not in use.

A Kill A Watt® meter is a great tool for measuring the amount of power that is being used by devices in your home. They are a relatively inexpensive purchase, and many local libraries

have them available to borrow at no charge. Some local utilities make them available to their customers, too.

Activity 1 | Morning Money Crunch

How much does it cost to get ready every morning? You know how much your clothes and food cost. What about the energy you use?

Materials

- · Access to UL label on electrical devices
- Calculator
- Clock or timer

Procedure

- Use the list on the next page and check off the devices you use almost every morning when getting ready for your day. Add other devices not listed as needed on an additional page or transfer your list to a spreadsheet.
- 2. Where practical, use the UL label on each device you use to find the power that it uses in watts. You may have to record the current from the UL label and then multiply by 120 V to get the power in watts.
- If you cannot easily access the UL label, use the table on the top off the next page to determine how much energy the average device uses.

- 4. Use a timer or clock to determine how many minutes each device is in use.
- 5. Divide the time in minutes by 60. Record this number to two decimal points as the number of hours in the table.
- 6. Multiply the watts of the device by the number of hours, then divide by 1,000, to get kWh for each device each morning.
- Read your electric bill to determine the rate you are charged per kilowatt-hour. If you don't know this, use the national average of \$0.13/kWh.
- 8. Multiply the kWh of each device by the cost of electricity for the cost to run that device.
- 9. Add the "cost to use" column for each of the devices to determine how expensive your morning is. Multiply by 5 for a work week, or by 7 if you do these same things on the weekend. How expensive is your week?
- 10. Multiply the weekly charge by 52 to determine the yearly cost for getting ready in the morning. If it is a device you don't use all year, estimate and multiply by the number of weeks it is used.

Activity 1 | Morning Money Crunch CONTINUED

Average Kilowatt-hour Consumption for Common Household Devices

Device	Estimated Energy Usage
Alarm clock	3 kWh / month
Cell phone	0.08 kWh / month
Clothes dryer	3.2 kWh / load
Clothes washer	3.5 kWh / load
Coffee maker	0.4 kWh / hr
Computer	0.05 kWh / hr
Curling iron	0.05 kWh / hr
Dishwasher	1.5 kWh / load
Electric toothbrush	0.08 kWh / month
Fan	0.03 kWh / hr
Fitbit	0.08 kWh / month
Freezer	90 kWh / month

Device	Estimated Energy Usage
Garage door opener	0.01 kWh / up-down cycle
Hair dryer	1.5 kWh / hr
Internet router or modem	0.15 kWh / day
iPod	0.08 kWh / month
Iron	1.08 kWh / hr
Microwave	0.12 kWh / 5 min
Radio	0.02 kWh / hr
Refrigerator	150 kWh / month
Stove	1.25 kWh / hr
Straightening iron	0.05 kWh / hr
Toaster	0.04 kWh / use
TV	0.2 kWh / hr
Well pump (2 HP)	1.5 kWh / hr

Source: Silicon Valley Power, National Grid

Data Table—Your Morning

Device	Power (W)	Minutes used	Hours used	kWh total	Electricity rate	Cost to use
Alarm clock (example)	2.0	60	1.00	0.002	\$0.13	\$0.0003
Cell phone						
Clothes dryer						
Clothes washer						
Coffee maker						
Computer						
Curling iron						
Dishwasher						
Electric toothbrush						
Fan						
Fitness tracker						
Freezer						
Garage door opener						
Hair dryer						
Internet router or modem						
iPod						
Iron						
Microwave						
Radio						
Refrigerator						
Stove						
Straightening iron						
Toaster						
TV						
Well pump (if you have a well)						

Activity 1 | Morning Money Crunch

1. How much does it cost to get ready every morning? \$

Discussion

How much does it cost to get ready every morning for a year? \$
What is the most expensive part of your morning?
Which parts of your morning are more expensive than you thought they would be?
Which parts of your morning are less expensive than you thought they would be?

- 5. Are there items you didn't include on the list? List these below. How do you think they compare in cost to others on the list?
- 6. Name three things you can do to reduce the cost of your morning. Calculate how much money you can save.

Activity 2 | (R)Amp Up the Efficiency

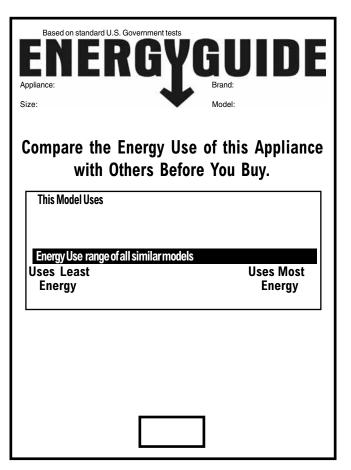
There are some things that use energy that nearly all of us must do. We all wash clothes, keep perishable food cold, and cook raw foods before eating them. All of these things require energy, but we don't all use energy equally. The amount of energy used to do a task is related to the efficiency of the machine doing the task. Essentially, efficiency is the proportion of useful energy out of a machine compared the amount of energy going in. More efficient machines do the same work as less efficient machines, but use less energy to do the work.

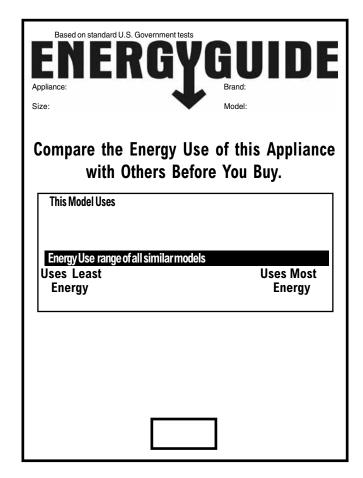
EnergyGuide labels are large, yellow and black stickers on devices that allow you to compare the efficiency of different appliances and electronics. Often the more efficient appliances have a higher purchase price, and this may mislead some into thinking they're more expensive overall. However, as an EnergyGuide label often shows, a more efficient appliance is less expensive to operate, and over time the difference in operating cost can more than make up for the difference in purchase price. This is called the payback period, and it is the amount of time required for the lower operating cost to make up for the higher purchase price. This is an important factor to consider when shopping for an appliance.

ENERGY STAR® rated appliances and electronics are the most efficient of their class. When you purchase an ENERGY STAR® device, you know that you are buying the most efficient product available.

Materials

- Internet access to an appliance retailer or a trip to an appliance store
- Calculator


Procedure

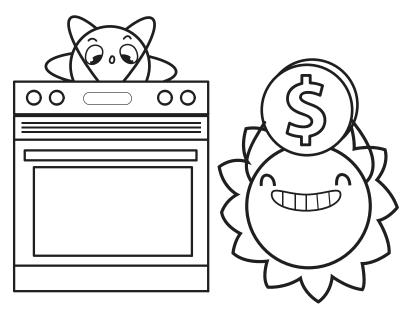

- Decide what appliance or electronic device you want to comparison shop. Some good suggestions are refrigerators, water heaters, washing machines, televisions, and computers.
- Find two very similar appliances to compare. Make sure they
 are the same size or capacity. For example, the same number of
 gallons for a water heater, or the same style and size of
 refrigerator. Make sure one is ENERGY STAR® rated, and the
 other is not.
- 3. Record the purchase price for each item.
- 4. Locate the EnergyGuide label for each item and record the annual energy use and operating cost for each.
- 5. Calculate the life cycle cost for both devices through ten years of operation.

Activity 2 | (R)Amp Up the Efficiency CONTINUED

Data

Appliance or Electronic Device:

APPLIANCE 1	EXPENSES	COST TO DATE	APPLIANCE 2	EXPENSES	COST TO DATE
Purchase Price			Purchase Price		
Year One			Year One		
Year Two			Year Two		
Year Three			Year Three		
Year Four			Year Four		
Year Five			Year Five		
Year Six			Year Six		
Year Seven			Year Seven		
Year Eight			Year Eight		
Year Nine			Year Nine		
Year Ten			Year Ten		


Activity 2 | (R)Amp Up the Efficiency CONTINUED

Discussion

1.	What is the payback	period for the device	you selected?

2. How long do most people own this device before replacing it? Does this payback period make sense for you and your household?

3. What are some other factors, besides purchase price, that you should consider when shopping for appliances or electronics?

Lesson 4 | Lighting

In 1879, Thomas Edison perfected the incandescent light. For the next 100+ years, lighting did not change much. The materials and bulb life improved, but the functionality of light bulbs in American households went largely unchanged for more than a century. However, incandescent light bulbs are exceptionally inefficient light makers, using only 10 percent of the electricity input to produce light! The other 90 percent of energy used by an incandescent is wasted as heat energy.

In 2007, the Energy Independence and Security Act was passed, and among other things it mandated improved efficiency in light bulbs sold in the United States. Today, CFL and LED lights are much more affordable and commonplace than they were even ten years ago. As technology has improved and production increased, the cost of these bulbs reduced to the point that now they are just as affordable as traditional, inefficient incandescent light bulbs.

When shopping for a light bulb, consider two important pieces of information, both of which are found on the Lighting Facts label of the bulbs. The first is how many watts of power the bulb uses to produce light. This will tell you how expensive the bulb will be to operate. The second is how many lumens of light are produced. Always compare lumens produced when comparing one bulb to another. You may also find it useful to look at color temperature, which indicates the color of the light produced. Higher temperatures are brighter, bluer light while lower color temperatures are softer, more reddish or yellow light.

Activity 1 | This Is Your Light!

Sometimes it's easy to just grab the least expensive light bulb and be done with it. A light bulb is a light bulb, right? Well, not exactly. Some bulbs are a little more expensive than others, but they also last much longer, too. This activity will help you consider the entire life cycle cost of different light bulbs to use in your home.

Materials

- Internet access to a light bulb retailer, a trip to a light bulb retailer, or the packages of light bulbs you have recently purchased
- Your home's electricity cost per kilowatt-hour (from your electric bill)
- Calculator

Procedure

- Choose a halogen incandescent (halogen), a compact fluorescent (CFL), and a light emitting diode (LED) bulb that each produce about the same number of lumens of light. You can find this information in the Lighting Facts label on the package.
- 2. Record the watts, lumens, expected life, and purchase price of each bulb.

- 3. Circle the life span for the bulb that will last the longest. This is the number to which you will standardize all of your other calculations. In other words, if the LED bulb will last 25,000 hours, and this is the longest life span of all of the bulbs, all other light bulbs must be calculated to 25,000 hours. This ensures a fair comparison.
- Determine how many light bulbs of the other types are needed to equal the life of the longest-lasting bulb. Record this in the table.
- Multiply the purchase price per bulb times the number of bulbs needed to give the standardized hours of light. This is the total purchase price.
- 6. Convert watts to kilowatts in the data table by dividing the wattage of each bulb by 1,000.
- Multiply kilowatts by the life span to which you are standardizing (25,000 in the example in number 3). This is the total energy used in kilowatt-hours by each bulb.
- 8. Multiply kilowatt-hours by the rate your utility charges, rounding to the nearest cent. This is the operation cost of each bulb for the stated number of hours of light.
- 9. Add the operating cost to the purchase price to get the entire life cycle cost for each type of light bulb.

Activity 1 | This Is Your Light!

CONTINUED

Data

	INCANDESCENT BULB	HALOGEN	COMPACT FLUORESCENT (CFL)	LIGHT EMITTING DIODE (LED)
Lumens				
Watts				
Expected life span				
Cost for one bulb				
Number of bulbs needed				
Purchase Price				
Watts (copied from above)				
Kilowatts				
Hours of operation (copied from circled value above)				
Total kilowatt-hours				
Electricity rate (from utility bill)				
Operating Cost				
Purchase Price (copied from above)				
Total Life Cycle Cost				

Discussion

- 1. Which light bulb is the least expensive when accounting for the entire life cycle cost?
- 2. Many utilities sell efficient light bulbs at a reduced cost. How many light bulbs can you replace in your home to use a more efficient light style?
- 3. If you change five light bulbs, each for a more efficient bulb, how much money will you save over the life of the efficient bulbs?

Activity 2 | Shed a Little Light on Efficiency

Using efficient lighting uses less energy, which saves money, but it also has a positive effect on the environment because efficient lighting reduces carbon dioxide emissions and landfill waste in burned-out light bulbs. Some people choose to go through their house and make a sweeping lighting change, but others are not financially able to replace all their lights at once. Additionally, some lighting applications need specialized light bulbs. For example, if your dining room has a dimmer switch, light bulbs compatible with a dimmer must be used. If the light is turned on and off several times in a day, a CFL bulb is not the best choice as turning one on and off repeatedly shortens the life span of a CFL. This activity will help your household decide where the most impact can be made by replacing inefficient light bulbs with more efficient bulbs.

Materials

- · LED bulb from kit
- · Nightlight from kit
- · Additional efficient bulbs as desired
- Calculator

Procedure

- Room-by-room, list all of the lights in your home, noting the wattage and type of each bulb. Use additional sheets of paper as necessary.
- Estimate the number of minutes each bulb is on each day. Also note whether the light is subject to being turned on and off several times in a day, such as in a frequently used bathroom with no windows, or a closet. Put a star or check mark beside these bulbs.
- 3. Convert the minutes to hours, and calculate the kilowatt-hours for each bulb, as was done in Activity 1 of Lesson 3, Electricity.
- 4. Discuss which lights would produce the greatest energy savings if changed and where the LED bulb and nightlight included in the home efficiency kit should be placed.
- Replace additional bulbs with CFL or LED bulbs as is practical or desired for your family.
- 6. Calculate the energy and monetary savings produced by replacing inefficient bulbs with efficient lights.

Data

Room	Light Bulb Location	Power (W)	Minutes used / day	Hours used / day	kWh total	Electricity rate	Cost / day
-							

Activity 2 | Shed a Little Light on Efficiency CONTINUED

Room	Light Bulb Location	Power (W)	Minutes used / day	Hours used / day	kWh total	Electricity rate	Cost / day

Discussion

- 1. What are the top three places or rooms to upgrade the lighting to a more efficient bulb? Why do you think that is the case?
- 2. Are there any places where lights could be used less often, as a conserving effort, until the light can be upgraded to a more efficient bulb?
- 3. Which bulbs do not necessarily need to be changed right away, but can wait until the bulb burns out?

Lesson 5 | Home Systems

Up until this point we've had you looking at individual systems within your home separately from each other. However, the systems in your house all work together. The moisture level in your house can affect how warm or cool the house feels. Unless it's a particularly hot day, you probably take a shower with heated water. Washing machines and dishwashers use electricity to run, and heated water to clean. Even the lights in your home can impact the heating and cooling system if they emit a lot of heat.

In this section, you will be evaluating each of the systems in your home, identifying their components, determining their approximate age where possible, and prioritizing which system(s) will get your attention first for an energy overhaul.

Some systems should be checked annually by a professional. Furnaces, air conditioners, and water heaters need periodic maintenance and inspection to make sure they are working properly and to ensure they continue to work when in high demand. There is nothing more miserable than a 90-degree day without air conditioning.

Other systems can be inspected and maintained by the homeowner. Water heaters need to be kept dust-free underneath so dust does not build up on vents. The coils of a refrigerator should also be vacuumed periodically to remove dust. Heating elements in an electric range should be replaced if damaged or misshapen. There are many other things you can do to extend the life of your appliances. Check appliance instruction manuals to see what you can do to make things run properly and last longer.

Activity 1 | Well, Well, Well, What Do We Have Here?

This activity has you checking all the systems in your house – heating, cooling, humidification, electrical appliances (large and small), electronics, and lighting – so that you can make decisions as a family about which require immediate attention and which can wait.

Materials

- Pen or pencil
- · Vacuum cleaner with hose attachment
- Eyes, ears, and big muscles to move heavy objects

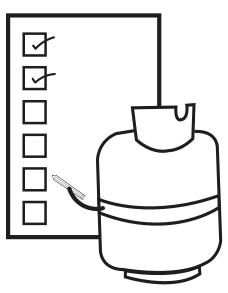
Procedure

- 1. Go through each section of the checklist on the next page and fill in the information about each system in your home.
- As you encounter a buildup of dust on any system, vent, or device, use the vacuum cleaner to eliminate it. Also look for dust clinging to the side of machines that you can vacuum or sweep away.

Activity 1 | Well, Well, What Do We Have Here?

C	h	e	C	k	li	SI
•		•	•			-

Heating System:	Central system Individual room system
	Forced air Boiler/radiator system Radiant floor heat
	Electric baseboard Other system:
	Fuel of heating system (gas, electric, etc.):
	Age of heating system: years
	Date air filter was last replaced:
	Date heating system was last serviced by HVAC professional:
Cooling System:	Central system Individual room system (window units)
	Age of cooling system: years
	Date cooling system was last serviced by HVAC professional:
Humidification:	Central system attached to furnace Room-sized system
	Central stand-alone system None present
	Date of last cleaning of humidifier:
Water Heating System:	Capacity of water heater: gallons or tankless
	Fuel of water heater: gas electric solar other
	Water heater insulation: none blanket other insulation
	Date of last drain-and-fill of water heater (not for tankless systems):
	Age of water heater: years
Appliances:	Age of refrigerator: years
	Age of oven / cooktop / range: years Fuel: gas electric
	Age of dishwasher: years
	Age of washing machine: years Age of dryer: years
Windows:	Type of windows: wood vinyl metal other
	Layers of glazing: single double triple
	Age of windows: years
	Condition of windows: like new some wear and tear need work
Insulation:	Type of attic insulation: fiberglass rock wool vermiculite
	spray foam cellulose other
	Type of wall insulation: fiberglass spray foam polystyrene sheeting
	cellulose other unknown
	Has the insulation been upgraded since the house was built? yes no


Activity 1 | Well, Well, What Do We Have Here?

Discussion

1	What	items	could	IISA	renl	acino	σί
Δ.	vviiat	Itellis	coulu	use	repi	aciii	χ:

2. Which items or systems may have an impact on other systems in your home. Why? How could making upgrades improve their function?

3. What items need more immediate attention?

Lesson 6 | Home Energy Audits and Summary

If you look back through the activities you have already done in this unit, you will find that you have been evaluating how energy is used in your home on a system-by-system basis. Essentially, you have been auditing your home's energy use.

A trained Certified Energy Manager, or CEM, can conduct a professional audit of the energy use in your home. A professional energy audit begins with assessing how your home already uses energy. The CEM will use several tools to evaluate how much energy is being used, as well as looking at your utility bills and discussing with you the habits already in place. After making several observations and measurements, the CEM will then make a list of recommendations for reducing energy costs, starting with the least expensive to implement, working down to the most expensive. Included in the report is a calculated estimate of the energy savings, in dollars, if each recommendation is implemented.

Much of what you have done can be used as a very basic audit. However, a professional will take it a step further by looking at your home with an infrared imaging device to see where the walls may not be well insulated, as well as other tests to measure air infiltration, light levels, etc. Because you have already done some of the work of an energy audit, you can now also make some basic recommendations for your household to save money. Start with the least expensive, calculate how much money can be saved with each change, working your way to the most expensive to implement. Then decide as a group which of those recommendations you can actually put into practice.

Activity 1 | Re-rate Your Energy Use

At the beginning of this unit, you rated your energy use. Re-evaluate how you as a household use energy and see if your rating has improved. As a group, determine which answer to each statement – either column 1, 2, 3, or 4 – best matches the situation in your home now that you have learned how to be in more control of your energy use. Shade in the box that corresponds to the best match. Then calculate your home's final energy consumption score.

Energy Efficiency and Conservation at Home	4	3	2	1
Appliances That Are ENERGY STAR® Rated	All	More than ½	About ½	None
Lights That Are CFL Or LED	All	Most	About ½	Almost none or none
Electronics With Phantom Loads (Drawing Power When Turned Off)	None (unplugged)	About ½	Most	All
Thermostat Setting During Heating Season	68 or lower	69-70	71-72	73 or higher
Thermostat Setting During Cooling Season	78 or higher	76-77	74-75	72 or lower
Laundry Loads Run Less Than Full	None	Less than ½	About ½	Most
Dishwasher Run Less Than Full	Never	Occasionally	About ½ the time	Usually
Hot Water Setting (°F)	120 or less	121-130	131-140	140 +
Doors And Windows Closed When Furnace Or Air Conditioner Turned On	Always	Usually	Sometimes	Rarely
Lights Left On When Room Is Empty	Rarely	Sometimes	About ½	Usually
Fans Left On Overnight	0	1-2	3-4	5+
TVs Left On Overnight	0	1	2	3+
Game Console Or Computer Left Running	Never	Rarely	Occasionally	Frequently
Heating System Turned On When	Temperature inside < 65	Temperature out- side < 65	Temperature out- side < 70	A/C not turned on
Cooling System Turned On When	Temperature inside > 83 or Not Turned On/In Use	Temperature out- side > 83	Temperature out- side > 80	Heat not turned on
Programmable Thermostat	Yes			No
Calculate Your Score – Total Boxes Shaded				
× score per box shaded	×4	×3	×2	×1
Column Score				
Total Score (add 4 column scores above)			Final Energy Consum	ption Score

Discussion

1.	A perfect house	ehold score is 64. What was your initial household score (copied from Lesson 1)?	_ What is your final household
	score?	By how many points did your score improve?	

- 2. Has your score improved as much as it could? Why or why not? Where else can you improve as a group and further reduce the amount of energy you are using?
- 3. Develop a plan for improvements. List a timeline and perhaps place your plan in priority order by cost or importance, or both.

National Sponsors and Partners

2019 Exelon Women's Leadership Summit

Association of Desk and Derrick Clubs Foundation

Alaska Electric Light & Power Company American Electric Power Foundation

American Fuel & Petrochemical Manufacturers

Apex Clean Energy

Armstrong Energy Corporation
Association for Learning Environments

Robert L. Bayless, Producer, LLC Baltimore Gas & Electric BG Group/Shell BP America Inc. Blue Grass Energy

Bob Moran Charitable Giving Fund Boys and Girls Club of Carson (CA)

Buckeye Supplies

Cape Light Compact–Massachusetts Central Alabama Electric Cooperative

Citgo CLEAResult

Clover Park School District Clovis Unified School District

Colonial Pipeline

Columbia Gas of Massachusetts

ComEd ConocoPhillips Constellation Cuesta College

Cumberland Valley Electric David Petroleum Corporation

David Sorenson

Desk and Derrick of Roswell, NM

Desert Research Institute

Direct Energy

Dominion Energy, Inc.

Dominion Energy Foundation

DonorsChoose Duke Energy

Duke Energy Foundation East Kentucky Power

EduCon Educational Consulting

Edward David E.M.G. Oil Properties Energy Trust of Oregon Ergodic Resources, LLC

Escambia County Public School Foundation

Eversource Exelon

Exelon Foundation Exelon Generation First Roswell Company

Foundation for Environmental Education

FPL

The Franklin Institute

George Mason University - Environmental Science

and Policy

Gerald Harrington, Geologist

Government of Thailand-Energy Ministry

Grayson RECC

Green Power EMC Greenwired, Inc.

Guilford County Schools-North Carolina

Gulf Power Harvard Petroleum Hawaii Energy

Houston LULAC National Education Service Centers Illinois Clean Energy Community Foundation Illinois International Brotherhood of Electrical

Workers Renewable Energy Fund Illinois Institute of Technology

Independent Petroleum Association of New Mexico

Jackson Energy

James Madison University Kansas Corporation Commission Kentucky Office of Energy Policy

Kentucky Environmental Education Council

Kentucky Power–An AEP Company Kentucky Utilities Company

League of United Latin American Citizens - National

Educational Service Centers

Leidos

Linn County Rural Electric Cooperative

Llano Land and Exploration

Louisiana State University - Agricultural Center

Louisville Gas and Electric Company

Midwest Wind and Solar Minneapolis Public Schools

Mississippi Development Authority–Energy Division Mississippi Gulf Coast Community Foundation

National Fuel

National Hydropower Association National Ocean Industries Association National Renewable Energy Laboratory

NC Green Power Nebraskans for Solar New Mexico Oil Corporation New Mexico Landman's Association

NEXTracker Nicor Gas

Nisource Charitable Foundation

NextEra Energy Resources

Noble Energy

North Carolina Department of Environmental

Quality

North Shore Gas

Offshore Technology Conference

Ohio Energy Project

Oklahoma Gas and Electric Energy Corporation

Oxnard Union High School District Pacific Gas and Electric Company

PECO

Pecos Valley Energy Committee People's Electric Cooperative

Peoples Gas Pepco

Performance Services, Inc.

Petroleum Equipment and Services Association

Permian Basin Petroleum Museum

Phillips 66

Pioneer Electric Cooperative

PNM

PowerSouth Energy Cooperative Providence Public Schools Quarto Publishing Group Prince George's County (MD)

R.R. Hinkle Co Read & Stevens, Inc.

Renewable Energy Alaska Project

Resource Central Rhoades Energy

Rhode Island Office of Energy Resources Rhode Island Energy Efficiency and Resource

Management Council
Robert Armstrong
Roswell Geological Society

Salal Foundation/Salal Credit Union

Salt River Project

Salt River Rural Electric Cooperative Sam Houston State University

Schlumberger C.T. Seaver Trust Secure Futures, LLC Seneca Resources

Shell Carson Shell Chemical Shell Deer Park Shell Eco-Marathon Sigora Solar

Singapore Ministry of Education Society of Petroleum Engineers

Sports Dimensions
South Kentucky RECC

South Orange County Community College District

SunTribe Solar

Sustainable Business Ventures Corp

Tesla

Tri-State Generation and Transmission

TXU Energy

United Way of Greater Philadelphia and Southern

New Jersey University of Kentucky

University of Maine University of North Carolina University of Rhode Island University of Tennessee

University of Texas Permian Basin University of Wisconsin – Platteville

U.S. Department of Energy

U.S. Department of Energy–Office of Energy

Efficiency and Renewable Energy

U.S. Department of Energy–Wind for Schools U.S. Energy Information Administration United States Virgin Islands Energy Office

Volusia County Schools

Western Massachusetts Electric Company -

Eversource